欢迎光临~久爱成疾在线视频,正弦波逆变电源,电力UPS
  咨询电话:021-51095123

新闻中心

新能源产业园电力专用逆变电源-储能在电力市场环境下如何优化控制?

研究电力市场环境下新能源产业园电力专用逆变电源-储能系统的优化控制策略。根据超短期风光发电预测,选择产业园工业负荷的日运行方式;利用产业园电力专用逆变电源-储能系统与趸售电力市场的交互,补偿产业园综合不平衡电量,在分时电价激励下,参与电网削峰填谷。建立了产业园电力专用逆变电源-储能系统电力市场环境的非线性数学规划模型,编制了Matlab程序进行求解。

通过对3种典型案例的分析,验证了所提电力专用逆变电源-储能控制策略的可行性,讨论了风光预测不确定性的实时电力市场应对方案,通过电力专用逆变电源-储能的优化控制,实现了电力市场环境下新能源产业园与电网的无缝连接、调度及间歇性可再生能源的异地消纳。

能源是人类社会生产生活的基础,是社会发展的保障。近年来,随着化石能源消耗的增长,因化石能源而引发的生态、气候、国家安全问题也日益显著,备受世界各国关注。

目前关于能源主要存在以下问题:①化石能源发电带来的环境问题日趋突出,而人类对能源的需求却日益增大,因化石能源而引发的世界范围的社会安全问题也日益增多;②使用化石能源而导致的雾霾,已严重影响我国北方工业政治中心的发展,绿色低碳已成为未来能源的发展趋势;③风起云涌的风、光可再生能源的快速发展,对电网的调度优化提出了严峻的挑战,严重弃风弃光现象的发生,已成为可再生能源消纳必须解决的问题。

传统日前调度为确定性发电机组的非凸混合整数非线性规划优化问题,以系统总运行费用最小为目标,满足功率平衡、电压安全,机组起停、爬坡及有功、无功上下限等约束条件。

含风光不确定性能源的日前调度主要采用:

①不确定规划法,利用Monte Carlo模拟、机会约束规划、相关机会规划等技术进行求解。当采样规模足够大时可获得满意的计算精度,但计算量过大;

②引入电力不足概率、电量不足期望值、负荷不足期望指标、系统失负荷等风险指标的随机优化问题,通常无法直接采用随机变量的分布函数进行求解[4],往往将其进行离散化处理,演绎成具有有限个情景的概率问题;

③多案例方法[5],根据概率分布,对风光发电样本抽样形成多个离散运行案例,并对单个案例进行分别寻优的优化方法。多案例调度中案例的生成多采用不确定变量概率分布的蒙特卡罗法、拉丁超立方抽样法等,样本集规模庞大。

以上求解方法虽考虑了风光新能源的随机性、不确定性,但究其实质还是将不确定的风光发电转化为允许风险下的拟常规机组的调度方式。

随着电力专用逆变电源-储能技术的发展,电力专用逆变电源-储能已成为提升能源互联网灵活性、安全性、稳定性,提高可再生能源消纳的关键技术之一[6]。应用电力专用逆变电源-储能平抑风电波动,已有大量学者进行了相关研究[7-8,15]。文献[9]研究电力专用逆变电源-储能系统用于提高风电接入的规划和运行综合优化模型,构建了多源并存的风-火-水-储-气联合优化调度模型。

文献[10]进一步研究含大规模电力专用逆变电源-储能的火电储协调调度模型,提出了基于双层规划和机会约束目标规划结合求解方法。文献[11]给出了电力专用逆变电源-储能在主动配电网的容量配置方案。综合分析以上文献,电力专用逆变电源-储能多用于平滑风电出力曲线,其在系统中的作用并不明确。如能针对系统平衡电量(负荷与风光出力之差)曲线进行补偿,可有效地降低电网调节难度。

文献[12]建立电力市场环境下发电侧、供电侧、大规模电力专用逆变电源-储能系统及用户响应的实时电价动态博弈联动模型,指出大规模电力专用逆变电源-储能电站的设置,可降低负荷峰谷差及各时段的电价差;需求侧大规模电池电力专用逆变电源-储能是解决电源、电网建设瓶颈及消纳新能源发电的理想途径。

文献[13]提出了基于模型预测控制的风/储集成发电系统的滚动调控策略,并将预测值作为调度指令,通过功率调节单元内的控制策略计算出合理的电力专用逆变电源-储能充放电功率,以补偿调度指令和风场实际输出的差值,实现风/储集成系统跟踪调度指令的能力。

随着现场实测的风光物理预测技术的发展,风光发电的在线预测精度正稳步提高。未来7天144h的短期功率预测精度已达90%左右,超短期预测误差可小于2.5%。相比于不确定规划法、机会规划法,在线风光功率预测的调度规划将进一步提高系统的安全性及可靠性。规模化电力专用逆变电源-储能也将作为新能源并网消纳的明星技术之一,正向商业化模式发展。

随着新能源占比的提高,100%新能源的本地消纳模式将成为间歇性可再生能源消纳的发展趋势。常规确定性可调机组的调度策略及其改进算法无法胜任完全不可调度的风光新能源的本地消纳模式的优化与调度,从而本文提出一种电力市场环境下产业园电力专用逆变电源-储能系统的优化控制策略。不同于常规确定性机组的调度优化,而采用风光发电预测驱动负荷运行的机制。

根据超短期风光发电预测,选择产业园工业负荷的日运行方式;利用产业园电力专用逆变电源-储能系统与趸售电力市场的交互,补偿产业园综合不平衡电量,并参与电网的削峰填谷,从而实现产业园供需平衡、安全稳定运行及间歇性可再生能源的本地消纳。

本文简单介绍了新能源产业园的源网荷构架,产业园的电力专用逆变电源-储能配置及优化控制策略。建立了产业园电力专用逆变电源-储能系统电力市场环境下的数学规划模型,编制了Matlab程序进行求解。对3种典型案例的分析,验证了该机制的可行性。

1  新能源产业园的配网架构

新能源产业园采用±20kV柔直电网,由4条±20kV直流线路、两个柔性直流换流站、两个DC/DC变换站组成。主要负荷为3组6MW工业负荷,及为其提供辅助服务的可中断负荷。电能的供应主要由本区域的风力发电厂、光伏发电站供给。产业园基地安装有12.5MW×4h电力专用逆变电源-储能电池单元,应急发电机等设备。新能源产业园通过单点接入主电网,参与趸售电力市场的实时交易。

1.1  风力发电厂

风力发电厂由10台2.5MW、GW121-2500直驱永磁发电机组成,共25MW。单机额定风速为9.3m/s,额定功率为2500kW。机组切入风速为3m/s,10min平均切出风速为22m/s,3s可承受最大风速为52.5m/s。


图1  新能源产业园配网结构图
新能源产业园电力专用逆变电源-储能在电力市场环境下如何优化控制?

1.2  光伏电站

新能源产业园的光伏电站额定发电容量为10MW。新能源产业园的光伏发电单元的主接线采用单母分段结构,接入母线5,经DC/DC双向隔离变压后由母线3接入±20kV柔性直流电网为产业园负荷供电。

1.3  电力专用逆变电源-储能系统

产业园的电力专用逆变电源-储能系统采用能量密度功率密度优越的超级电容电池(super-capacitor energy storage system, SESS)模型,具有超级电容及电池电力专用逆变电源-储能的综合优势,功率密度高、充放电速度快,循环使用寿命长等优点。

当S1关断,S2以给定占空比通断时,超级电容电池以给定速度向系统释放能量(放电控制);反之,当S2关断,S1以给定占空比通断时,超级电容电池以给定速度吸收来自系统的能量(充电控制)。设ESOCmin为电力专用逆变电源-储能系统的禁放电量,ESOCmax为电力专用逆变电源-储能系统的禁充电量,则电力专用逆变电源-储能系统禁充电量可定义为其额定容量,禁放电量可按需进行配置。

图2  超级电容电池电力专用逆变电源-储能系统
新能源产业园电力专用逆变电源-储能在电力市场环境下如何优化控制?

1.4  产业园与电网的交互

新能源产业园经并网点PCC与交流电网相联,参与趸售电力市场交易、获取所需的相关辅助服务。PCC点柔性换流器采用虚拟同步机控制策略,具有同步发电机、同步电动机运行模式。

当产业园售出盈余电量时,PCC柔性换流器运行于同步发电机控制模式;在买入系统电量时,切换至同步电动机模式。柔性换流器还具有独立的有功、无功、交流电压、直流电压控制功能,可独立控制PCC交流母线电压、有功无功输出,执行调度下达的调频调压指令。

2  新能源产业园源荷综合平衡

2.1  风光发电预测(略)

风光发电预测可分为物理预测及统计预测两大类[17]。基于统计的预测根据历史数据,对未来某时段的非水可再生能源发电进行预测,适用于中长期规划。基于物理的预测方法,接收多方实时数字天气预报信息,结合风光发电站测光塔和测风塔现场实测数据(如风速、风向、光照强度、光照角度、湿度、温度等因素),考虑风光发电厂周围地理环境,采用风光发电设备厂家提供的出力曲线进行预测。

风光可再生能源发电集合预报含预测值,及给定置信水平下的预区间[预测上限Pmax,预测下限Pmin],如图3所示。

图3  基于物理方法的新能源发电集合预测系统
新能源产业园电力专用逆变电源-储能在电力市场环境下如何优化控制?

3  电力专用逆变电源-储能参与日前电力市场的数学模型(略)

接入产业园的风光可再生能源,其边际发电成本接近零边际成本价,通过优惠电价与产业园工业企业达成大用户直购电协议,激励地区工业的发展。产业园微网运维商利用产业园电力专用逆变电源-储能配置容量,结合产业园运行方式优化,通过虚拟同步发电机控制,参与趸售电力市场博弈。

有电力需求时,产业园作为买方从趸售电力市场购电,有剩余电量时作为卖方向趸售电力市场输出剩余电能,从而实现间歇性可再生能源的本地消纳和供需平衡,并通过趸售电力市场,将盈余电量送至远方异地消纳。

4  案例分析

为验证本文提出的电力专用逆变电源-储能系统优化控制策略,首先需要对产业园的风光进行在线发电预测,结合预测结果匹配相应的电解铝运行方式,利用Matlab软件根据约束式(4)至式(13)进行编程确定产业园电力专用逆变电源-储能系统参与趸售电力市场的时间和交易电量。本文通过对产业园给定的3种综合不平衡电量案例进行综合分析,论证本方案的可行性。

4.1  案例1

风光发电预测见表1。应用式(5)得产业园运行方式1综合平衡电量最小,该运行方式三组电解铝负荷全开,其24h风光、发电预测、负荷用电及综合平衡电量、相关电价见表1。

表1  产业园综合平衡1
新能源产业园电力专用逆变电源-储能在电力市场环境下如何优化控制?

由图7(a)可见,产业园24h不平衡电量波动幅度较小时,利用电力专用逆变电源-储能容量参与实时电力市场,根据电力专用逆变电源-储能充放电约束和市场价格变化编制Matlab程序,确定电力专用逆变电源-储能系统在1∶00—5∶00和9∶00—15∶30时段参与实时电力市场购电,对应趸售电力市场电力供大于求的时段;其他时段电力专用逆变电源-储能参与售电,获得利益。

图7  产业园综合平衡1
新能源产业园电力专用逆变电源-储能在电力市场环境下如何优化控制?

由图7(b)可知,趸售电力市场电高峰时段   [6∶00—9∶00],[16∶00—21∶00]电价高,根据Matlab求解结果确定产业园向电力市场售出盈余电能的时刻和电量,此时产业园运行于虚拟同步发电机模式,向外电网供电;在趸售电力市场“低谷”时,产业园运行于虚拟同步电动机模式,根据Matlab计算的结果确定低价“吸纳”主电网多余电能的电量和时刻,用于生产和储存,参与电价激励下的主电网削峰填谷运行。

观察图7(b)可知,时段[1∶00—4∶00]为“低谷”时段,分时电价出现负值,电力专用逆变电源-储能系统“吸纳”主电网多余电量的同时,还增加了部分收益。低谷负电价使电力专用逆变电源-储能系统充放电双向获益,激励将来典型电力专用逆变电源-储能调峰调频的发展,有效实现系统削峰填谷。

趸售电力市场出现负电价,主要原因有:①作为基荷的核电机组无法短时经济退出;②新能源机组的边际成本价格因受补贴的影响可能低于零边际成本价。

4.2  案例2

表2给出对应风光发电预测。应用式(5)求得产业园运行方式k。在0∶00—16∶00时段,三组电解铝负荷全部投运;在16∶00—24∶00高峰负荷时段,一组电解铝负荷退出进入保温状态运行。

对产业园工业运行方式的分析计算,表明运行方式k较适宜该风光预测案例。由图8可观察,1∶00—5∶00时段为用电“低谷”,电网电价较低,此时三组电解铝负荷及电力专用逆变电源-储能系统全部投入,消耗廉价电量。16∶00—24∶00高峰时段,一组电解铝负荷退出,电力专用逆变电源-储能SOC逐步减少,实现产业园的经济运行。

4.3  案例3

风光预测发电量波动较大,产业园电解铝负荷全天开两组,对应运行方式1。观察图9(a)可见,24h综合平衡电量波动较小,利用Matlab确定具体产业园电力专用逆变电源-储能系统具体参与市场的时间和电量。根据优化的结果确定电力专用逆变电源-储能系统在1∶00—5∶00时段和14∶00—15∶00时段进入充电状态。

结合图9(b)分时电价可看出,电价较低,电网运行于“低谷”时段,产业园通过PCC点向电网购电。在7∶00—10∶00时段和17∶00—22∶00时段,电价较高,电网处于用电“高峰”时段,根据Matlab的结算结果确定产业园通过PCC点向电力市场售出电量,获得最优收益,满足电力专用逆变电源-储能系统充放电速度及容量约束条件。

图9  产业园综合平衡j


综上,在电力市场环境下,通过产业园电力专用逆变电源-储能系统参与日前电力市场的优化控制策略,受趸售电力市场实时电价引导和自身电力专用逆变电源-储能充放电速度以及容量的限制。通过算例结果可知,将风光发电-产业园生产运行-电力专用逆变电源-储能系统三者合理优化组合参与趸售电力市场可以获得可观的收益。

结论
本文研究电力市场环境下新能源产业园电力专用逆变电源-储能系统的优化控制策略。根据超短期风光发电预测,选择产业园工业负荷的日运行方式;利用产业园电力专用逆变电源-储能系统与趸售电力市场的交互,补偿产业园综合不平衡电量,并参与电网的削峰填谷。建立了产业园电力专用逆变电源-储能系统电力市场环境的非线性数学规划模型,编制了Matlab程序进行求解。对3种典型案例的分析,验证了该机制的可行性。

不同于常规确定性机组的调度优化,100%新能源产业园依据风光发电预测选择工业负荷运行方式。通过控制规模电力专用逆变电源-储能系统的充放,与趸售电力市场交互。对产业园电力专用逆变电源-储能系统的优化控制,既补偿了产业园综合不平衡电量,在分时电价激励下参与电网的削峰填谷,又同时通过趸售电力市场将盈余电量送至远方异地消纳。
用手机扫描二维码关闭
二维码
菠萝菠萝蜜在线观看